Prof. John Chapman, MD, PhD, DSc

- Director of the Dyslipidemia and Atherosclerosis Research Unit of the National Institute for Health and Medical Research (INSERM) at the Pitié-Salpêtrière Hospital in Paris
- Associate European Editor of “Arteriosclerosis, Thrombosis and Vascular Biology” and of “Pharmacology and Therapeutics”
- President of the European Atherosclerosis Society
CVS-European Postgraduate School
in Cardiology
Prague 2011

WHAT NEXT
IN CVD PREVENTION?

M. John Chapman Ph.D., D.Sc., FESC
Director, Dyslipidemia and Atherosclerosis
Research Unit, INSERM,
University Pierre and Marie Curie,
Hôpital de la Pitié-Salpetriere,
Paris, France

President, European Atherosclerosis Society
INTERHEART : RF for first MI

High Global CV Risk

Accelerated Atherosclerosis and CVD

Apo B / Apo AI

1. Smoking
2. Diabetes
3. Hypertension
4. Abdominal Obesity
5. Psychosocial Stress
6. Vegetables and Fruit Consumption Daily
7. Exercise
8. Alcohol Intake
9. Daily

On-treatment LDL-C & CHD Events in Statin Trials

Lowering LDL-C:HDL-C Ratio to approx 1:1 stops Atherosclerosis progression

IVUS Trials: REVERSAL, CAMELOT, ACTIVATE, ASTEROID

BUT......
Residual Cardiovascular Risk in Prospective Intervention Trials

Chapman et al, Pharmacol Therap, 2010
BUT......
Obésité: fléau mondial

En France:
1 personne sur 3 en surpoids ou obèse
20 Millions en surpoids
6 Millions d’obèses

Obépi 2009
WHO Prediction of Worldwide Prevalence of TYPE 2 DIABETES in 2025

Le Monde, 2001
Pathophysiology of Type 2 Diabetes, Metabolic Syndrome and Premature Vascular Disease

- Positive Energy Balance
 - Adipose Fat accumulation
 - Portal FFA
 - VLDL production
- Mixed Dyslipidemia
- Adipose Fat accumulation
- Glucose AGE
 - IL6, IL8
 - TNFα
 - Angio II
 - Leptin
 - PAI-1
 - Adiponectin
- Insulin resistance
 - Inflammation
 - Oxidative Stress
 - Microangiopathy
 - Atherosclerosis
- Hyperglycemia
- Hypertension
Mixed Dyslipidemia

TG-rich LPs
- Chylos, VLDL
- Remnants
 - Fasting
 - Nonfasting

Chronic Inflammation, Premature Atherosclerosis and CHD

HDL-C
- Apo AI

Small Dense LDL
- Apo B
Factors Contributing to Elevated Triglyceride Levels

<table>
<thead>
<tr>
<th>High Triglyceride Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity/overweight</td>
</tr>
<tr>
<td>Physical inactivity</td>
</tr>
<tr>
<td>Cigarette smoking</td>
</tr>
<tr>
<td>Excess alcohol intake</td>
</tr>
<tr>
<td>High carbohydrate diet</td>
</tr>
<tr>
<td>Type 2 diabetes, renal failure, underactive thyroid</td>
</tr>
<tr>
<td>Certain drugs</td>
</tr>
<tr>
<td>Genetic factors</td>
</tr>
</tbody>
</table>

NCEP III=National Cholesterol Education Program Adult Treatment Panel III
Metabolic Basis of low HDL-C in Type 2 Diabetes and Metabolic Syndrome with insulinoresistance

Diagram Explanation

- **Liver**
 - Increase in **FFA**
 - Production of **TG-rich VLDL-1**
 - CE increase, TG decrease

- **Adipose Tissue**
 - Increase in **TG**
 - Increase in **HSL**
 - Increase in **FFA**
 - Increase in **INSULIN**

- **CETP**
 - CE increase, TG decrease

- **HDL**
 - CE increase, TG increase
 - HDL decrease

- **Small dense LDL**
 - TG decrease, CE increase

- **Kidney**
 - AI, AII
 - Decrease in **HDL**
 - TG decrease

- **In Vivo Observations**
 - Small dense LDL
 - HSL increase
 - FFA increase
 - INCREASE in TG
Cardiovascular Disease Prevention: The Unmet Need

- Metabolic disease
- CHD patients
- Mixed hyperlipidemia
- Hypercholesterolemia (FH)
- Renal Disease
Unmet Therapeutic Needs in Atherogenic Dyslipidemia

- Statin intolerance; pharmacogenomically-determined hyporesponse (OATP1B1) to statins

Responses:
- 1) anti-PCSK9 biologics
- 2) new potent statins, poorly metabolised, low dose, polypharmacy
- 3) MTP inhibitors, low dose, combination therapy
- 4) Anti-sense oligonucleotides (apo(a) ; apoB)
HDL: New Perspectives

QUANTITY
HDL-C / Apo AI

QUALITY
Particle structure
Lipidome, Proteome
Functionality

Abnormal Metabolism and Defective Function of HDL in Diabetic High TG/Low HDL Dyslipidemia

Oxidative stress

Liver

Chronic low-grade inflammation

IL-6

SAA (CRP)

A-I

PON1

HL

TG

Functionally deficient HDL

↓ Cholesterol efflux capacity
↓ Antioxidative activity
↓ Anti-inflammatory activity
↓ Antiapoptotic activity
↓ Vasodilatory activity

Mixed Dyslipidemia

TG-rich LPs
Chylos, VLDL + Remnants
- Fasting
- Nonfasting

Chronic Inflammation,
Premature Atherosclerosis
and CHD

HDL-C
Apo AI

Small Dense LDL
Apo B
Proposed algorithm for management of elevated TG and/or low HDL-C in high-risk patients at LDL-C goal

Patient at LDL-C goal\(^1\) WITH
\[
\begin{align*}
\text{TG} & \geq 1.7 \text{ mmol/L} \\
\text{and/or} \\
\text{HDL-C} & < 1.0 \text{ mmol/L}
\end{align*}
\]

- Intensify lifestyle management
- Address secondary causes
- Check compliance

Insufficient improvement?\(^2\)

- Consider adding niacin or a fibrate\(^3\)
- Consider intensifying LDL-C lowering\(^4\)

Copyright EAS and Eur Heart J 2011
Atheroprotective & Vasculoprotective Actions of HDL

- Reverse Cholesterol Transport
- Cellular Cholesterol Efflux
- Anti-Infectious Activity
- Anti-Thrombotic Activity
- Anti-Inflammatory Activity
- Anti-Apoptotic Activity
- Anti-Oxidative Activity
- Anti-proteolytic activity
- Endothelial Repair; Vasodilation
- Innate immune system

Cholesterol efflux capacity, HDL Function and Atherosclerosis

- Khera et al, NEJM 2011, 364: 127-135

- “Cholesterol efflux capacity from macrophages has a strong inverse association with both carotid IMT and the likelihood of angiographic CAD, independently of HDL-cholesterol”
HDL-C Raising Agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Effect on HDL-C</th>
<th>Effect on LDL-C</th>
<th>Effect on Triglycerides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niacin</td>
<td>15%–35% ↑</td>
<td>5%–25% ↓</td>
<td>20%–40% ↓</td>
</tr>
<tr>
<td>Fibrates</td>
<td>1%–20% ↑</td>
<td>up to 10% ↓</td>
<td>20%–50% ↓</td>
</tr>
<tr>
<td>Statins</td>
<td>1%–15% ↑</td>
<td>18%–55% ↓</td>
<td>7%–30% ↓</td>
</tr>
</tbody>
</table>
Cholesteryl Ester Transfer Protein (CETP)

VLDL or Chylomicron Remnant

Cholesteryl Ester

Apo AI

HDL

Apo B

Apo E

CETP

TG

CE

Triglyceride
The **dal-HEART Program**

dalcetrapib HDL Evaluation, Atherosclerosis & Reverse cholesterol Transport

The **dal-HEART Program** hypothesis: enhancing HDL efficacy through CETP modulation will treat the underlying disease of atherosclerosis and will attenuate CV risk

<table>
<thead>
<tr>
<th>dalOUTCOME S</th>
<th>dal-VESSEL²</th>
<th>dal-PLAQUE³</th>
<th>dal-PLAQUE²⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,600 patients recently hospitalized for ACS</td>
<td>450 patients with CHD or CHD risk equivalent</td>
<td>130 patients with CHD</td>
<td>900 patients with CAD</td>
</tr>
<tr>
<td>To evaluate the effect of dalcetrapib on CV outcomes</td>
<td>To evaluate the effect of dalcetrapib on endothelial function and blood</td>
<td>To evaluate the effect of dalcetrapib on inflammation, plaque size and burden, measured by PET/CT and MRI</td>
<td>To evaluate the effect of dalcetrapib on atherosclerotic disease progression, assessed by IVUS and carotid B-mode ultrasound</td>
</tr>
</tbody>
</table>

RECRUITMENT COMPLETE

pressure, measured by FMD and ABPM
Cardiovascular Disease Prevention: The Unmet Need

- Metabolic disease
- CHD patients
- Mixed hyperlipidemia
- Hypercholesterolemia (FH)
- Renal Disease